
Radeon Developer Panel
Documentation

Release 1.3.0

AMD Developer Tools

Jan 22, 2019

Contents

1 Getting started on Windows 3

2 Getting started on Linux 5

3 How to profile your application 7
3.1 Profiling on a local system . 7
3.2 Capturing using the keyboard on Linux . 11
3.3 Profiling on a remote system . 11

4 How to use the Driver Settings 13

5 Using the Clock settings 17

6 The Connection log 19

7 The Radeon Developer Service 21
7.1 Radeon Developer Service for desktop developer system . 21
7.2 Radeon Developer Service for headless GPU systems . 22

8 Known Issues 23
8.1 Cleanup After a RadeonDeveloperServiceCLI Crash . 23
8.2 Windows Firewall Blocking Incoming Connections . 23
8.3 Disabling Linux Firewall . 25
8.4 Setting GPU clock modes on Linux . 25
8.5 Running the Panel with elevated privileges . 26
8.6 Radeon Developer Panel connection issues on Linux . 26
8.7 Missing Timing Data for DirectX 12 Applications . 26
8.8 Radeon Developer Service Port numbers . 29
8.9 Problems caused by the presence of non-AMD GPUs and non-AMD CPUs with integrated graphics . 29

i

ii

Radeon Developer Panel Documentation, Release 1.3.0

The Radeon Developer panel is part of a suite of tools that can be used by developers to optimize DirectX12 and
Vulkan applications for AMD GCN graphics hardware. The suite is comprised of the following software:

• Radeon Developer Mode Driver – This is shipped as part of the AMD public driver and supports the developer
mode features required for profiling and debugging.

• Radeon Developer Service (RDS) – A system tray application that unlocks the Developer Mode Driver features
and supports communications with high level tools.

• Radeon Developer Service - CLI (Headless RDS) – A console (i.e. non-GUI) application that unlocks the
Developer Mode Driver features and supports communication with high level tools.

• Radeon Developer Panel (RDP) – A GUI application that allows the developer to configure driver settings and
generate profiles from DirectX12 and Vulkan applications.

• Radeon GPU Profiler (RGP) – A GUI tool used to visualize and analyze the profile data.

This document describes how the Radeon Developer Panel can be used to profile frame-based applications on
AMD GCN graphics hardware. The Radeon Developer Panel connects to the Radeon Developer Service in
order to collect a profile.

Contents 1

Radeon Developer Panel Documentation, Release 1.3.0

2 Contents

CHAPTER 1

Getting started on Windows

• To collect complete profiles for DirectX 12, run the script ‘AddUserToGroup.bat’ in the scripts folder. See
Missing Timing Data for DirectX 12 Applications for more information

3

Radeon Developer Panel Documentation, Release 1.3.0

4 Chapter 1. Getting started on Windows

CHAPTER 2

Getting started on Linux

• After installing the latest video driver, make sure that the current user is a member of the graphics group. This
can be done by typing: “sudo usermod -a -G video $LOGNAME” Where $LOGNAME is the user name. Log
out and log back in again for this to take effect.

• Install the vulkan shared library by typing “sudo apt-get install libvulkan1” or by downloading the Vulkan
SDK from the LunarG website.

• Run the scripts/EnableSetClockMode.sh script to enable setting the GPU clock. See Setting GPU clock modes
on Linux for more information

• If you wish to capture profiles using the keyboard hotkey, see Capturing using the keyboard on Linux

5

https://www.lunarg.com/

Radeon Developer Panel Documentation, Release 1.3.0

6 Chapter 2. Getting started on Linux

CHAPTER 3

How to profile your application

3.1 Profiling on a local system

IMPORTANT: The application you want to profile must NOT already be running. The panel needs to be configured
in advance of starting your application.

1. Start the RadeonDeveloperPanel.exe on your local system. The panel will startup up with the Connection tab
already highlighted (see below).

7

Radeon Developer Panel Documentation, Release 1.3.0

The UI has three main elements:

• Connection status – to the Radeon Developer Service (currently not connected)

• Recent connections – list shows a history of your previous connections

• New connection – section that allows you to make either a new local or remote connection

1. Connect the Radeon Developer Panel to the Radeon Developer Service using either of the following meth-
ods:

(a) Select the localhost entry in the “Recent connections” list, then click the “Connect” button. This will
start the Radeon Developer Service on the local system and establish a connection.

(b) Double-click on any Recent connection, and RDP will attempt to establish a connection to RDS running
on the given host.

Note that the red dot to left of the “CONNECTION” tab should change to green to indicate that the connection was
successful.

You may get a “Failed to connect to RDS” pop up message when running the panel for the very first

8 Chapter 3. How to profile your application

Radeon Developer Panel Documentation, Release 1.3.0

time. If the Radeon Developer Service is not running, the panel will try to start the service automatically
for local connections and this can fail due to Windows file permissions (the Radeon Developer Service
will not be a known application to Windows and the program will not be permitted to start). If you see
this message try manually starting the “RadeonDeveloperService.exe” and connect again.

1. Select the executable you want to profile using either of the following methods:

(a) Use the “. . . ” button to browse to the executable, or manually type it in the executable name textbox.

(b) Select an active process within the Active Applications table, and click the “Add to targets” button. The
process will need to be restarted in order to apply settings at application startup, and to enable collection
of RGP profiles.

2. Click the “Add to list” button to add the new executable to the list of processes that will start in Developer Mode.

3. The “Enable profiling” check box should be checked automatically for the application you just added to the list.

4. Start your application.

The driver will render an overlay on top of the application’s render window if all is working correctly. The
overlay will indicate if Profiling is enabled for the application, and will display the Client Id that RDP uses to
communicate with the process.

3.1. Profiling on a local system 9

Radeon Developer Panel Documentation, Release 1.3.0

The panel will detect when your application has started, and will switch to the Profiling tab.

1. Click the “Capture profile” button or press the Ctrl + Shift + C hotkey to generate an RGP profile. The
hotkey can be useful when capturing profiles from applications running full screen or when an app requires
focus when rendering. After a few seconds a new profile should appear in the list below.

Note: Certain anti-virus software may block the hotkey feature from monitoring key presses.

1. Right-clicking on a row in the list of recent profiles will open a context menu for the selected file. The context

10 Chapter 3. How to profile your application

Radeon Developer Panel Documentation, Release 1.3.0

menu allows you to quickly navigate to the profile location in the filesystem, and rename or delete the file.

2. To open a profile file in the Radeon GPU Profiler, select the profile in the list and click the “Open profile”
button or double-click the selected row.

3.2 Capturing using the keyboard on Linux

Some applications capture focus or run fullscreen which makes capturing a profile difficult. The RadeonDeveloper-
Panel provides a hotkey to allow capturing using the keyboard. Presently, this is Shift-Ctrl-C. On Linux, the hotkey
is only available when starting the Panel with elevated privileges (ie sudo RadeoDeveloperPanel). Root privileges are
needed in order to read the keyboard device, which by default is found in the path ‘/dev/input/by-path’, and is a file
ending with ‘event-kbd’. If this path doesn’t exist or the keyboard device has a different name, copy the KeyboardDe-
vice.txt file from the docs directory to the root folder where these tools are located and edit this file so it contains the
full path and file name of the keyboard device on your system.

3.3 Profiling on a remote system

There are two variations of the Radeon Developer Service: The GUI based RadeonDeveloperService and the Radeon-
DeveloperServiceCLI (command line interface). For headless operating systems which do not support a graphical user
interface, the RadeonDeveloperServiceCLI executable can be started from a terminal console window.

The following steps are used to connect the RadeoDeveloperPanel to a remote Radeon Developer Service:

1. Start the RadeonDeveloperService or RadeonDeveloperServiceCLI executable on the remote system.

(a) NOTE: RadeonDeveloperServiceCLI is a command line version of the Radeon Developer Service that
has no UI components and is designed to run from the command line. Please note that no system tray icon
will appear when the command line version of the service is running.

2. Start the RadeonDeveloperPanel executable on your local system. The panel will start up with the Connection
tab already highlighted (see below).

3. In the New connection section, fill in the Address text box with the IP address of the remote system running
the Radeon Developer Service.

4. Click the “Connect new” button. This will establish a connection to the remote system. The red dot to left of
the “CONNECTION” tab should change to green to indicate that the connection was successful.

3.2. Capturing using the keyboard on Linux 11

Radeon Developer Panel Documentation, Release 1.3.0

5. Go to step 3 in “Profiling on a local system” above and continue.

12 Chapter 3. How to profile your application

CHAPTER 4

How to use the Driver Settings

NOTE: Currently, the driver settings are only implemented for DirectX12. Vulkan driver settings will be available
soon.

The Radeon developer Panel (RDP) allows the developer to modify driver settings to experiment with features that
may affect performance and quality. When you run RDP for the first time the driver settings are empty in the tool
and you will need to run your application with the panel once to retrieve the driver settings. This is a one-time setup
process.

The important thing to remember is that when you change settings they will only be applied the next time you
start the application. Changes to the settings do not effect a currently running application.

1. To get started with settings configure your connection, connect, and setup your application as shown below.

13

Radeon Developer Panel Documentation, Release 1.3.0

2. Start your application and let it run for a short while (few seconds) then terminate the process. This will
populate the driver settings in the tool.

3. Click on the Settings tab

4. Currently, there are two categories of settings (Debug and General), and there are only 4 settings in total. Many
more will be made available soon. The General settings are shown below. Click on the small arrow to the right
of the setting name to see the possible values and descriptions. The “Default All” button will reset the values
back to the original driver settings. Settings can also be exported and imported.

14 Chapter 4. How to use the Driver Settings

Radeon Developer Panel Documentation, Release 1.3.0

1. Make the changes you require to the settings and then click on the Connection tab.

2. Make sure you have selected the “Apply settings” checkbox on the application you wish to change the settings
for.

3. Start your application, the settings are applied by the panel as your application starts.

4. Profile your application as described in the “How to profile your application” section above.

15

Radeon Developer Panel Documentation, Release 1.3.0

16 Chapter 4. How to use the Driver Settings

CHAPTER 5

Using the Clock settings

The Radeon developer Panel (RDP) allows the developer to select from a number of clock modes.

17

Radeon Developer Panel Documentation, Release 1.3.0

Normal clock mode will run the GPU as it would normally run your application. To ensure that the GPU runs within
its designed power and temperature envelopes, it dynamically adjusts the internal clock frequency. This means that
profiles taken of the same application may differ significantly, making side-by-side comparisons impossible.

Stable clock mode will run the GPU at a lower, fixed clock rate. Even though the application may run slower than
normal, it will be much easier to compare profiles of the same application.

For the Radeon GPU Profiler tool, the clock settings here are not used since the driver forces a profile to take place
using peak clocks.

18 Chapter 5. Using the Clock settings

CHAPTER 6

The Connection log

Click on the “Show connection log” button from the CONNECTION tab to see any logging information that is pro-
duced by the the panel activity. Additional information about the connection and any errors encountered by RDP and
the RDS are displayed here. Below is an example of typical output from a session that captured a profile. The log can
be saved, cleared and copied to the clipboard using the buttons at the bottom.

This log is also saved in a log file located at:
“C:\Users\your_name\AppData\Roaming\RadeonDeveloperDriver\RDPLogFile.txt”

On Linux, this log is located at:
“~/.RadeonDeveloperDriver/RDPLogFile.txt”

19

Radeon Developer Panel Documentation, Release 1.3.0

20 Chapter 6. The Connection log

CHAPTER 7

The Radeon Developer Service

Two version of the Radeon developer service are provided, one with a configuration UI and system tray icon, and one
designed for use with headless GPU system where no UI can be supported.

7.1 Radeon Developer Service for desktop developer system

RadeonDeveloperService(.exe) – Can be used for general use where the system has a monitor and UI (e.g. desktop
development machines). The Radeon Developer Service includes a configuration window containing basic service
configuration settings and software info. Double click the Radeon Developer Service system tray icon to open the
configuration window, or right-click on the system tray icon and select ‘configure’ from the context menu.

• Listen port – The port that the Radeon Developer Service uses to listen for incoming connections from a remote
Radeon Developer Panel. The default port is 27300. Altering the port will disconnect all existing sessions.
The circular arrows icon to the right of the Listen port field can be clicked to reset the port to the default value.

21

Radeon Developer Panel Documentation, Release 1.3.0

• Version info – Software version information for the Radeon Developer Service.

Double click the Radeon Developer Service system tray icon again or right-click on the system tray icon and select
‘configure’ from the context menu to close the configuration window.

Please note that when running both the Radeon Developer Panel and the Radeon Developer Service on the same
system the communication between the two uses pipes, not sockets and ports, so setting the port has no effect.

7.2 Radeon Developer Service for headless GPU systems

RadeonDeveloperServiceCLI(.exe) – Command line version for use with headless GPU systems where no UI can be
provided. NOTE: This version can also run on a system that has a monitor and UI.

The following command line options are available for RadeonDeveloperServiceCLI:

1. – port <port number> Overrides the default listener port used by the service (27300 is the default).

2. – enableUWP Enables UWP support (disabled by default).

Please note that the service will need to be explicitly started before starting the Radeon Developer Panel. If the service
isn’t running, the Radeon Developer Panel will automatically start the UI version of the Radeon Developer Service,
which may not be what is required.

22 Chapter 7. The Radeon Developer Service

CHAPTER 8

Known Issues

8.1 Cleanup After a RadeonDeveloperServiceCLI Crash

If the RadeonDeveloperServiceCLI executable crashes on Linux, shared memory may need to be cleaned up by run-
ning the RemoveSharedMemory.sh script located in the script folder of the RGP release kit. Run the script with
elevated privileges using sudo. If this fails to work, try starting the panel with elevated privileges.

8.2 Windows Firewall Blocking Incoming Connections

1. Deleting the settings file. If problems arise with connection or application histo-
ries, these can be resolved by deleting the Radeon Developer Panel’s settings file at:
“C:\Users\your_name\AppData\Roaming\RadeonDeveloperDriver\RDPSettings.xml”

on Windows. On Linux, the corresponding file is located at:

“~/.RadeonDeveloperDriver/RDPSettings.xml”

2. “Connection Failure” error message. This issue is sometimes seen when running the panel for the very first
time. The panel tries to start the service automatically for local connections and this can fail. If you see this
message try manually starting the “RadeonDeveloperService.exe” and connect again.

3. Remote connection attempts timing out. When running the Radeon Developer Service on Windows, the
Windows Firewall may attempt to block incoming connection attempts from other machines. The best methods
of ensuring that remote connections are established correctly are:

(a) Allow the RDS firewall exception to be created within the Windows Firewall when RDS is first started.
Within the Windows Security Alert popup, enable the checkboxes that apply for your network configura-
tion, and click “Allow access”.

23

Radeon Developer Panel Documentation, Release 1.3.0

1. If “Cancel” was previously clicked in the above step during the first run, the exception for RDS can still be
enabled by allowing it within the Windows Control Panel firewall settings. Navigate to the “Allow an app or
feature” section, and ensure that the checkbox next to the RadeonDeveloperService.exe entry is checked:

24 Chapter 8. Known Issues

Radeon Developer Panel Documentation, Release 1.3.0

1. Alternatively, disable the Windows Firewall entirely will also allow RDS to be connected to.

NOTE The Windows firewall alert in no way indicates that the Radeon Developer tools are trying to commu-
nicate to an AMD server over the internet. The Radeon Developer tools do not attempt to connect to a remote
AMD server of any description and do not send personal or system information over remote connections. The
Radeon Developer Panel needs to communicate with the Radeon Developer Service, which may or may not be
on the same machine, and a connection needs to be made between the two (normally via a socket).

8.3 Disabling Linux Firewall

If the remote machine is running Linux and the “Connection Failure” error message is displayed, the Linux firewall
may need to be disabled. This is done by typing “sudo ufw disable” in a terminal. The firewall can be re-enabled after
capturing by typing “sudo ufw enable”.

8.4 Setting GPU clock modes on Linux

Adjusting the GPU clock mode on Linux is accomplished by writing to
/sys/class/drm/card<n>/device/power_dpm_force_performance_level, where <n> is the index of the card in
question. By default this file is only modifiable by root, so the application being profiled would have to be run as root
in order for it to modify the clock mode. It is possible to modify the permissions for the file instead so that it can be
written by unprivileged users. The Radeon GPU Profiler package includes the “scripts/EnableSetClockMode.sh”
script which will allow setting GPU clock mode in cases where the target application is not, or cannot, run as root.
Execute this script before running the Radeon Developer Service and target application, and the GPU clock
mode can be updated correctly at runtime. This script needs to be run each time you reboot your machine; the file
permissions do not survive system reboots.

8.3. Disabling Linux Firewall 25

Radeon Developer Panel Documentation, Release 1.3.0

8.5 Running the Panel with elevated privileges

As previously mentioned, the panel only needs to be run with elevated privileges if the keyboard shortcut is needed
for capturing. On Ubuntu 18.04, a dialog box may pop up indicating that the RadeonDeveloperService is running in
headless mode. This is nothing to worry about and will not affect profiling in any way; it just means that the root
shell doesn’t have access to the user interface so is running without one. The only downside is that there won’t be a
‘service’ icon in the system tray.

8.6 Radeon Developer Panel connection issues on Linux

The Radeon Developer Panel may fail to start the Radeon Developer Service when the Connect button is clicked. If
this occurs, manually start the Radeon Developer Service, select localhost from the the Recent connections list and
click the Connect button again.

8.7 Missing Timing Data for DirectX 12 Applications

To collect complete profile datasets for DirectX 12 applications, the user account in Windows needs to be associated
with the “Performance Log Users” group. If these privileges aren’t configured properly, profiles collected under the
user’s account may not include all timing data for GPU Sync objects.

A batch file is provided to add the current user to the group (scripts\AddUserToGroup.bat). The batch file should be
run as administrator (Right click on file and select “Run as Administrator”). The script’s output is shown below:

Alternatively, to manually add the active user to the proper group, follow these steps:

1. Open the Run dialog by using the Windows Start menu, or through the Windows + R shortcut.

(a) Type “lusrmgr.msc” into the Run window, and click OK.

26 Chapter 8. Known Issues

Radeon Developer Panel Documentation, Release 1.3.0

2. Within the “Local Users and Groups” configuration window that opens, select the Groups node.

(a) Select the Performance Log Users entry. Right-click and select Properties.

1. To add the active user to the group, click the Add. . . button. (If the active user appears within this list, the
account is already configured properly.)

8.7. Missing Timing Data for DirectX 12 Applications 27

Radeon Developer Panel Documentation, Release 1.3.0

2. Type the active user’s account name into the Select Users, Computers, Service Accounts, or Groups dialog,
and click OK.

3. When the user has been added to the group, restart the machine and log back in. RDS should now be configured

28 Chapter 8. Known Issues

Radeon Developer Panel Documentation, Release 1.3.0

to collect full timing information for DirectX 12 applications.

8.8 Radeon Developer Service Port numbers

Please note that when running both the Radeon Developer Panel and the Radeon Developer Service on the same system
the communication between the two uses pipes, not sockets and ports, so setting the port has no effect. In this scenario,
it is possible to set the service to listen on a no-default port, leave the panel on the default port, and connection will
work fine.

8.9 Problems caused by the presence of non-AMD GPUs and non-
AMD CPUs with integrated graphics

The presence of non-AMD GPU’s and CPU’s on your system can cause the failure to generate a profile or apps to not
run at all.

These problems typically occur with Vulkan apps in systems that have:

1. A non-AMD CPU with in integrated non-AMD GPU

2. A non-AMD discrete GPU

Vulkan applications, by default, use GPU 0 which usually maps to the integrated GPU, or in some cases, the non-AMD
discreete GPU. In both cases Vulkan apps will either fail to run, or RGP profiling will not work (no RGP overlay will
be present in these cases).

To avoid these issues:

1. Disable any non-AMD integrated GPU’s in the device manager

2. Disable any non-AMD discrete GPU’s in the device manager, and/or physically remove from the system.

8.8. Radeon Developer Service Port numbers 29

	Getting started on Windows
	Getting started on Linux
	How to profile your application
	Profiling on a local system
	Capturing using the keyboard on Linux
	Profiling on a remote system

	How to use the Driver Settings
	Using the Clock settings
	The Connection log
	The Radeon Developer Service
	Radeon Developer Service for desktop developer system
	Radeon Developer Service for headless GPU systems

	Known Issues
	Cleanup After a RadeonDeveloperServiceCLI Crash
	Windows Firewall Blocking Incoming Connections
	Disabling Linux Firewall
	Setting GPU clock modes on Linux
	Running the Panel with elevated privileges
	Radeon Developer Panel connection issues on Linux
	Missing Timing Data for DirectX 12 Applications
	Radeon Developer Service Port numbers
	Problems caused by the presence of non-AMD GPUs and non-AMD CPUs with integrated graphics

